Structure Reports

Online
ISSN 1600-5368

Tsonko Kolev, ${ }^{\text {a }}$ Rumyana

Bakalska, ${ }^{\text {b }}$ Boris Shivachev ${ }^{\text {a }}$ and Rosica Petrova ${ }^{\text {a* }}$
${ }^{\text {a Bulgarian Academy of Sciences, Institute of }}$ Organic Chemistry, Acad G. Bonchev Street, Building 9, 1113 Sofia, Bulgaria, and
${ }^{\text {b }}$ University of Plovdiv, Department of Organic Chemistry, 24 Tzar Assen Street, 4000 Plovdiv, Bulgaria

Correspondence e-mail: rosica.pn@clmc.bas.bg

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.049$
$w R$ factor $=0.126$
Data-to-parameter ratio $=8.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6-O-Acetylcodeine

The title compound (systematic name: 6α-acetoxy- $4,5 \alpha$-epoxy-3-methoxy-17-methyl-morphin-7-ene), $\quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}, \quad$ crystallizes with one molecule in the asymmetric unit. The molecular structure exhibits features typical of morphine derivatives with a T configuration. The three-dimensional packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

6-O-Acetylcodeine, (I), was synthesized as a part of our study on opium alkaloids. The transformation of morphine derivatives into different metabolites is a matter of practical interest for detecting opiates in blood or urine. Although the studied compound has long been known as a urinary marker to detect the use of street heroin, its crystal structure has not been reported in the literature until now.

(I)

The molecule of (I) has the characteristic T-shape of classical opiates, with a dihedral angle between the mean planes of the $A / B / C$ and D / E rings (see scheme) of $80.56(8)^{\circ}$; the rings are denoted following commonly used nomenclature for opiates. The main structural features of the molecule are very close to those of codeine, heroin and morphine (Canfield et al., 1979, 1987; Gylbert, 1973). The ring fusions and conformations are similar to those previously reported for morphine derivatives (Gelders \& de Ranter, 1979; Petrickova et al., 2002; Moody et al., 1997). Aromatic ring A is planar, B is close to an envelope, C and D assume half-chair conformations and E assumes a chair form (Table 1). The conformation about the single $\mathrm{C}-\mathrm{C}$ bonds within the rings is staggered, except for those along the C5-C6 bond which is eclipsed, with an $\mathrm{O} 2-$ C5-C6-O3 torsion angle of 0.8 (5) ${ }^{\circ}$ (Moss, 1996).

Received 21 June 2005
Accepted 11 July 2005
Online 16 July 2005

The three-dimensional arrangement of the molecules is shown in Fig. 2. Two distinct types of weak interactions are observed (Table 2); C5-H5 • N1 contacts connect molecules along the a axis to form chains, while $\mathrm{C}-\mathrm{H}_{\mathrm{A}} \cdots \pi$ contacts link the chains along the b axis. The angle between the normal to the plane of the aromatic unit and the line linking C20 and the centroid of the ring (Cg1) is $7.35(15)^{\circ}$.

An independent structure determination of 6-O-acetylcodeine is reported in the preceding paper (Sonar et al., 2005).

Experimental

Compound (I) was synthesized according to Huang et al. (1999). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$
$M_{r}=341.39$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.628(2) \AA$
$b=12.727(2) \AA$
$c=15.4842(19) \AA$
$V=1700.3(5) \AA^{3}$
$Z=4$
$D_{x}=1.334 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer Non-profiled $\omega / 2 \theta$ scans 4181 measured reflections 1928 independent reflections 1093 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.077$

Mo $K \alpha$ radiation

Cell parameters from 22 reflections
$\theta=18.3-19.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=290(2) \mathrm{K}$
Prism, colorless
$0.25 \times 0.25 \times 0.25 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.126$
$S=0.98$
1928 reflections
226 parameters

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2
The packing of the $6-O$-acetylcodeine molecules. The dotted lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. [Symmetry codes: (i) $\frac{1}{2}+x, 1-y, 1-z$; (ii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$.]

H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997) and MERCURY (Version 1.3; Bruno et al., 2002); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

organic papers

TK thanks the DAAD and the Alexander von Humboldt Foundation for a grant within the priority programme (Stability Pact for South-Eastern Europe). This work has been supported by the Bulgarian National Fund of Scientific Research (contracts Nos. X-1213 and F-1212).

References

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Canfield, D., Barrick, J. \& Giessen, B. C. (1979). Acta Cryst. B35, 2806-2809.
Canfield, D., Barrick, J. \& Giessent, B. C. (1987). Acta Cryst. C43, 977-979.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Gelders, Y. G. \& de Ranter, C. J. (1979). Acta Cryst. B35, 1111-1116.
Gylbert, L. (1973). Acta Cryst. B29, 1630-1635
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Huang, B., Lu, Y., Ji, B. \& Christodoulou, A. P. (1999). US Patent No. 6008 355.

Moody, P. C. E., Shikotra, N., French, C. E., Bruce, N. C. \& Scrutton, N. S. (1997). Acta Cryst. D53, 619-621.

Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.
Petrickova, H., Jegorov, A., Husak, M. \& Cisarova, I. (2002). Acta Cryst. A58 (Supplement), C-126.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2005). Acta Cryst. E61, o2579o2581.

